LaPdO₃: The First Pd^{III} Oxide with the Perovskite Structure

Seung-Joo Kim,[†] Sylvain Lemaux,[†] Gérard Demazeau,^{*,†} Jong-Young Kim,[‡] and Jin-Ho Choy[‡]

Institut de Chimie de la Matière Condensée de Bordeaux, UPR.CNRS 9048 87 avenue A. Schweitzer, 33608 Pessac Cedex, France National Nanohybrid Materials Laboratory School of Chemistry and Molecular Engineering Seoul National University, Seoul, 151-747, Korea

Received June 29, 2001

Perovskite-type oxides containing transition-metal ions with degenerated electron configurations have attracted a considerable interest due to their specific physical properties¹ including colossal negative magnetoresistance [high-spin Mn³⁺ (3d⁴)], charge disproportionation [high-spin Fe^{IV} (3d⁴)], metal-insulator transition [low-spin Ni^{III} (3d²)], and high- T_c superconductity [Cu²⁺ (3d⁹)]. Although Pd^{III} (d⁷) may also represent promising candidates in these fields, the main investigations have been carried out within fluorides² and halogen-bridged salts³ systems, owing to a configurational instability of Pd^{III} (d⁷) and a strong tendency to disproportionate into Pd^{II} and Pd^{IV} . In early works, Pd_2F_6 with the LiSbF₆-type structure have been characterized by a cationic ordering with the formulation Pd^{II}Pd^{IV}F₆.⁴ Under high-pressure Pd₂F₆ has shown a pronounced decrease of the resistivity, which suggests the charge redistribution $(Pd^{II} + Pd^{IV} \rightarrow 2Pd^{III})$.⁵ The stabilization of Pd^{III} as single valent form has been achieved in NaPdF₄ and K₂NaPdF₆, and EPR measurements confirm the electronic configuration $(t_{2g}^6 d_{z^2}^1)^2$. The oxides containing Pd^{III} are quite rare. Recently the series of APd_2O_4 (A = rare earth) have been prepared under high pressure where the Pd with mixed valence of +2.5 is coordinated by four oxygen atoms forming approximately square planar PdO₄ group.⁶ The aim of this work is to stabilize Pd^{III} in an oxygen lattice through the high-pressure techniques for which we select perovskite structure, very stable under the pressure conditions.

Stoichiometric amounts of La₂O₃ and PdO in the ratio 1:2 were mixed together and then fired at 1040-1070 °C for 2 weeks. The product was composed of mainly La₂Pd₂O₅ and small amount of La₄PdO₇ and Pd metal. To help the oxidation of Pd metal, the previous product was treated under oxygen pressure (100 MPa) at 800 °C for 1 day. The resultant product was mixed with KClO₃ as oxygen source and treated under vacuum at 120 °C to eliminate water contamination. The mixture was encapsulated in a platinum tube, pressurized under 5 GPa using a *Belt*-type apparatus, and

(3) For example, see: (a) Allen, G. C.; Hush, N. S. Prog. Inorg. Chem., 1967, 8, 357. (b) Wada, Y.; Mitani, T.; Yamashita, M.; Koda, T. J. Phys. Soc. Jpn. 1985, 54, 3143.

(4) (a) Bartlett, N.; Rao, P. R. *Proc. Chem. Soc., London* **1964**, 393. (b) Tressaud, A.; Wintenberger, M.; Bartlett, N.; Hagenmuller, P. *C. R. Acad. Sci.* **1976**, 282C, 1669.

(5) Langlais, F.; Demazeau, G.; Portier, J.; Tressaud. A.; Hagenmuller, P. Solid State Commun. **1979**, 29, 473.

(6) (a) Krämer, G.; Jansen. M. J. Solid State Chem. **1995**, 114, 206. (b) Chen, B.-H.; Walker, D.; Scott, B. Chem. Mater. **1997**, 9, 1700.

Figure 1. X-ray powder diffraction patterns, Rietweld refinement (upper and lower tick marks represent the Bragg positions for LaPdO₃ and KCl, respectively), and schematic presentation of crystal structure for LaPdO₃.

heated at 1100–1150 °C for 10 min. After being quenched to room temperature, the sample was washed with distilled water to remove KCl and subsequently dried at 120 °C for 2 h. The composition of final black powder was determined as LaPd- $O_{2.98\pm0.02}$ with chemical titration and microprobe analysis.⁷ The compound was stable to 500 °C at which it started to decompose to La₂Pd₂O₅ + 0.5O₂.

X-ray diffraction profile (Figure 1) for the final black powder could be indexed using a primitive orthorhombic unit cell implying that LaPdO₃ would adopt the GdFeO₃-type structure (space group *Pbnm*) with unit cell parameters a = 5.5898(3) Å, b = 5.8502(3) Å, c = 7.8666(4) Å. Significant Jahn–Teller effect was not observed although $c/\sqrt{2a}$ ratio(0.995) is smaller than 1.⁸ Considering the difference ($\Delta r = 0.07$ Å) between the radii of oxide and fluoride ions, the average Pd^{III}–O bond distance (2.08 Å) is compatible with the average Pd^{III}–F bond distance (2.00 Å) estimated from recent EXAFS study on K₂NaPdF₆ with the elpasolite-type structure where the (PdF₆) octahedra exhibit a Jahn–Teller distortion.⁹

To confirm the oxidation state of Pd, an X-ray absorption spectroscopic study was performed at the Pd L_3 edge (3173 eV).¹⁰ Two Pd oxides were used as references (Pd^{II}O and Zn₂Pd^{IV}O₄¹¹). The Pd L₃-edge XANES spectra (Figure 2) for all compounds are characterized by one main peak which primarily corresponds to the electric dipole-allowed transition from 2p states to 4d ones.

Since no multiplets effect was detected in the Pd L_3 XANES spectra of fluorides,⁹ it can be assessed that multiplet transitions are also absent from the spectra of the oxides, due to a higher covalency of the Pd–O bond compared to that of the Pd–F bond. Therefore the Pd L_3 edge spectra of these oxides is directly relevant of the empty electronic states of the 4d orbitals.¹² A shift of the peak to higher energies is clearly observed while moving from Pd^{II}O to Zn₂Pd^{IV}O₄. The peak in the Pd L_3 XANES of

(12) Choy, J. H.; Kim, D. K.; Demazeau, G.; Jung, D. Y. J. Phys. Chem. 1994, 98, 6258.

[†] Institut de Chimie de la Matière Condensée de Bordeaux.

[‡] Seoul National University.

⁽¹⁾ For example, see: (a) von Holmolt, R.; Wecker, J.; Holzapfel, B.; Samwer, K. *Phys. Rev. Lett.* **1993**, *71*, 2331. (b) Takano, M.; Nakanishi, N.; Takeda, Y.; Naka, S.; Takada, T. *Mater. Res. Bull.* **1978**, *13*, 61. (c) Lacorre, P.; Torrance, J. B.; Pannetier, J.; Nazzal, A. I.; Wang, P. W.; Huang, T. C. J. Solid State Chem. **1991**, *91*, 225. (d) Bednorz, J. B.; Müller, K. A. Z. Phys. B **1989**, *64*, 189.

^{(2) (}a) Tressaud. A.; Khairoun, S.; Dance, J. M.; Grannec, J.; Demazeau, G.; Hagenmuller, P. C. R. Acad. Sci. Paris, Ser. II **1982**, *t.*295, 183. (b) Khairoun, S.; Dance, J. M.; Demazeau, G.; Tressaud, A. Rev. Chim. Miner. **1983**, 20, 871.

⁽⁷⁾ After dissolving the sample in HCl solution containing Br⁻, Br₂ liberated from the re-dox reaction of Pd^{III} and Br⁻ was titrated with hydrazine sulfate standard solution. The end point was determined by bi-amperometry. Microprobe analysis revealed that K, Cl, and Pt were not contained in the final sample (<0.5%).

⁽⁸⁾ $c/\sqrt{2}a$ ratio does not work in some trivalent nickelates (d⁷), PrNiO₃ (0.994) and NdNiO₃ (0.998) where no static Jahn–Teller effect has been observed.

⁽⁹⁾ De Nadaï, C.; Demourgues, A.; Grannec, J. Nucl. Instrum. Methods Phys. Res. B 1997, 133, 1.

⁽¹⁰⁾ The XANES spectra of Pd L₃-edge were measured at room temperature in transmission mode using a Si(111) double-crystal monochromator on station D44 in LURE (Orsay-France). The spectra were calibrated in energy with the presence of argon traces in the ionization chamber (Ar K-edge: 3202 eV). The spectra were normalized at 3185 eV.

⁽¹¹⁾ Demazeau, G. Omeran, I.; Pouchard, M.; Hagenmuller, P. *Mater. Res. Bull.* **1976**, *11*, 1449.

Figure 2. Normalized Pd L₃-edge XAS spectra of Pd^{II}O, LaPd^{III}O₃, and Zn₂Pd^{IV}O₃ at room temperature. The dotted line represents the average spectrum of Pd^{II}O and Zn₂Pd^{IV}O₃.

LaPdO₃ (3175.7 eV) is exactly located at the middle position of two peaks for Pd^{II} (3174.6 eV) and Pd^{IV} (3176.8 eV) references. The shift induced by the difference in oxidation state is less predominant in such oxides compared to the fluorides (only 2.2 eV between the Pd^{II} and Pd^{IV} oxides compared to 4 eV in the fluorides⁹), owing to the lower ionicity of Pd–O bond of than Pd-F one. The peak intensity for LaPdO₃ is also between them, which is correlated with d-band vacancies. Additionally, the spectrum of LaPdO₃ can clearly be distinguished from the average of the Pd L₃ spectra of Pd^{II} and Pd^{IV} oxides. Therefore, the formal oxidation state of Pd in LaPdO₃ is close to III rather than II + IV. However, the peak for LaPdO₃ is broader than those for Pd^{II}O and Zn₂Pd^{IV}O₄. Such broadening may be attributed from strong covalency due to the high degree of hybridization of Pd 4d and O 2p orbitals.¹³ A similar effect has been observed in comparing the Cu L₃-edge of metallic cuprate with the insulating one.¹⁴

The local structure of Pd^{III} was estimated by the EXAFS analysis on Pd K-edge.¹⁵ The first shell (1.1 Å < R < 2.1 Å) in R space (phase shift: uncorrected), which seems to be nearly isotropic, corresponds to the nearest neighbors of Pd ion, that is, (Pd-O) shells (Figure 3a). For this shell the radial distance (R), the edge position (E_0) and the Debye–Waller factor (σ^2) were refined. Due to the strong correlation between σ^2 and the coordination number (CN), the CN was fixed to 6. A good fit accuracy is obtained for this shell by considering standard harmonic pair distribution, which suggests the absence of a large distortion of (PdO₆) octahedra in LaPdO₃ (Figure 3b). The average Pd-O bond distance is estimated to be 2.06 Å, which is well consistent with XRD results mentioned above.

The molar magnetic susceptibility taken at H = 10 kOe for 5 $K \le T \le 300$ K can be fitted to the formula,¹⁶

Figure 3. (a) Fourier transform of k³-weighted Pd K-egde for LaPdO₃ (b) k³-weighted Fourier-filtered EXAFS functions of Pd K-edge for LaPdO₃.

Figure 4. Temperature dependence of the molar magnetic susceptibility of LaPdO3 after correction of the core diamagnetic term.

$\chi = \chi(0) - aT^2 + C/T$

with $\chi(0) = 1.0 \times 10^{-4}$ emu/mol, $a = 1.1 \times 10^{-10}$ emu/K² mol, and $C = 1.5 \times 10^{-3}$ emu K/mol (Figure 4). The first and second terms are Pauli paramagnetic susceptibility and its small temperature dependency, respectively. The last term represents a small Curie component. We cannot rule out a trace of impurities as sources of the Curie term. Such a magnetic behavior is consistent with the metallic electron configuration $(t_{2g}^6 \sigma^{*1})$ for Pd^{III} which is deduced from the XANES/EXAFS analyses. The absence of large enhancement of the Pauli susceptibility observed in LaNiO₃ $(5.1 \times 10^{-4} \text{ emu/mol})$ is probably due to weak electron-correlation effect in the 4d compared to the 3d system.¹⁷

From these physicochemical characterizations LaPdO₃ appears the first oxygen-perovskite containing Pd^{III}.

Acknowledgment. We thank S. Belin and V. Briois in LURE (French Synchrotron in Orsay) for their help in Pd L3 XAS measurements and the French Ministry of Foreign Affairs for a Pasteur Scholarship (S.J. KIM).

Supporting Information Available: The results of Rietveld refinemet on powder XRD patterns and the fitted structural parameters in EXAFS analysis (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA016522B

⁽¹³⁾ de Groot, F. M. F.; Hu, Z. W.; Lopez, M. F.; Kaindl, G.; Guillot, F.; Tronc, M. J. Phys. Chem. 1994, 101, 6570. (14) Sondericker, D.; Fu, Z.; Johnston, D. C.; Eberhardt, W. Phys. Rev. B

^{1987, 36, 3983.}

⁽¹⁵⁾ The XAS measurements on the Pd K-edges were carried out with synchrotron radiation at the beam line 10B of the Photon Factory (KEK-PF) in Tsukuba, Japan. A Si(311) monochromator channel-cut monochromator was used. The data analysis was performed according to the previously published procedures. For example, see: Choy, J. H.; Kim, D. K.; Hwang, S. H.; Demazeau, G.; Jung, D. Y. J. Am. Chem. Soc. 1995, 117, 8557. (16) Sreedhar, K.; Honig, J. M.; Darwin, M.; McElfresh, M.; Shand, P.

M.; Xu, J.; Crooker, B. C.; Spalek, J. Phys. Rev. B 1992, 46, 6382.

^{(17) (}a) Goodenough, J. B.; Mott, N. F.; Pouchard, M.; Demazeau, G. *Mater. Res. Bull.* **1973**, *8*, 647. (b) Zhou, J.-S.; Goodenough, J. B.; Dabrowski, B.; Klamut, P. W.; Bukowski, Z. Phys. Rev. Lett. **2000**, *84*, 526.